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ABSTRACT

A method of deriving a probability distribution function

to approximate the distribution of times required for the

conduct of military operations is developed, A procedure for

collecting the necessary data is suggested, and a detailed

description of an algorithm for manual generation of random

times is given. Thus the capability of introducing random

times to simulate time delays in manual war games is pro-

vided.
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PREFACE

War games are currently used to a wide extent to simu-

late the interactions of opposing forces in the conflict

situation. The validity of conclusions based upon the re-

sults of such simulation depends directly upon the quality

of the inputs to the games. One important input is the

time required by forces to accomplish certain missions or

conduct specific operations. Many games presently utilize

a method of fixed time delays which remain constant for

specific operations throughout the play of the game. De-

pending upon the objectives of the war gaming effort, this

may well be adequate. Under certain conditions, however,

it is desirable, if not mandatory, to utilize some method

of random time delays.

Where an attempt is made to follow the latter course,

the current trend is to introduce times generated from

either a Uniform Probability Distribution or a Triangular

Probability Distribution. The use of these distributions

is quite arbitrary, based upon ease of computation rather

than degree of approximation to reality. In effect, they

are used only to inject an element of randomness rather than

to simulate the random manner in which real times vary.

In introducing random time delays to a manual war game,

there are two basic tasks to be accomplished. One must first
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derive some probability distribution which varies in a

manner similar to the manner in which the real times being

simulated vary. Having done so, one must then devise some

method to generate random numbers from this distribution,

which will be used to simulate random times.

This thesis attempts to present a method of accomplishing

these two t£sks which offers an advantage over the methods

presently in use. A procedure is suggested, where in the

absence of recorded or experimental results, professional

estimates of the required times may be used to determine an

approximating probability distribution. A method of generating

random times from this distribution is presented which repre-

sents a compromise between ease of computation and degree of

simulation.

Chapter I considers the overall problem of determining

the specific probability distribution which best describes

a real life event, and describes the difficulties inherent

in solving this problem.

Chapter II describes a method of collecting certain

minimal data about the distribution of times required for

the conduct of military operations. It further demonstrates

how this data may be used to develop a distribution function

which approximates the distribution of the real times.

Chapter III presents an algorithm for generating random

time delays based upon the approximation resulting from

Chapter II.
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INTRODUCTION

SECTION 1

War gaming is an attempt to build a workable and

meaningful model of the interactions between opposing forces

in a conflict situation, and in this paper should be dis-

tinguished from war exercises in which troops are actually

deployed in the field. Whether on a map, computer, or

playing board, war gaming is an abstraction or idealization

of reality and is in no sense an attempt to duplicate reality,

which attempt would require the philosopher^ "perfect"

knowledge of the universe. The level of this abstraction

or idealization has varied throughout the history of war

gaming from the highly idealized games of war chess (circa

161)4) through Prussian rigid Kriegsspiel (circa 1865) with

its complicated and elaborate rules and tables and the various

forms of free Kriegsspiel (circa 1875) with their heavy

reliance on control and director groups, free play and flexi-

bility. (1)

Historically, rigid Kriegsspiel was an attempt to

move the war game out of the parlor and closer to real oper-

ations by using maps, actual rates of fire, actual movement

times and a set of rules defining how assessments were to

be made. In its later development, however, it suffered

from this same elaborate structure of rule books, tables and





formulas necessary for the assessment of play, so that play

lost a great deal of flexibility and consumed considerable

time. As a reaction against this complication, free

Kriegsspiel was developed in which the assessments of play

and guidance for the game were made by a director or control

group staff, materially reducing the necessity for elaborate

formal rules but placing heavy burdens on the operation and

method of selection of the control group.

Modern war gaming preserves this distinction between

"rigid" and "free" war games quite well. Until recently,

most war gaming was of the "free" play type mainly because

of its relative ease of play, its flexibility and the ability

of the control group to determine the depth of detail to be

investigated. With the development of high-speed digital

computers to handle the extensive tables and rules, however,

"rigid" type games have again come into their own. So the

modern manual war game (say, the CPX) is a direct descendant

from rigid Kreigsspiel.

As there is no such thing as the "right" type of war

game but only the 'toost useful" for a particular purpose,

these two extreme forms of the war game are often combined

in varying degrees and as a group are called composite war

games. The games which are more formal and rigid are par-

ticularly well suited for investigations of operations in

which a great deal of detailed information is available and





the interrelationships of the various components of the

game are well understood. These games can often provide

useful information for current planning, research and evalu-

ation. The freer type games are more useful for training

and investigation of the gross effects of changing battle

conditions on an operation.





SECTION 2

War gaming in any form may be characterized as a time

varying process in which decisions must be made in the course

of a conflict of some type by the opposite players. The vari-

ables which describe the game (the state variables) change in

a framework of time called game time, which may be in discrete

increments (every half hour, day or week, etc) or may be

continuously varying. The decisions which are made within

the framework of the rules of a particular game have an

effect on the forces of each side which would be instan-

taneous, if some time delay were not provided for in the

rules of the game, and if the model is to have any foundation

in a reality which is determined by time and space, so must

the model reflect action in time.

In a game, these time delays for the occurrence of an

event may be assessed against a side in three general ways.

First, for actions of a particular type in a particular situ-

ation a fixed time delay , always the same, may be assessed.

This time may be multiplied by a degradation factor for weather,

light, climate, etc., but the base time will remain the same,

oecond, for actions of a particular type in a particular situ-

ation, a random time delay may be assessed. This time delay

will be determined from a known or assumed probability density

function which ideally approximates the probability density

function of the real event. Thus we avoid the pitfalls of

having an always perfectly functioning military machine
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operating in the game and, while more difficult to handle than

fixed delays, the extra effort may be justified by the type

investigation that the game is intended to make. Third,

arbitrary time delays may be assessed which arise out of

factors outside the game itself. With no known or assumed

underlying probability density function, they are products of

expedience (to speed up closure of forces, for instance).

Fixed time delays are constant delays in game time as-

sessed against a particular event. These delays are in

general an aggregate of specific time delays set down in a

rule book and held constant throughout the game.

Fixed time delays have some distinct advantages. In a

mechanical game they are easy to program and require a mini-

mum amount of computer core memory in the game iterations.

In manual war gaming the use of fixed time delays

greatly simplifies the already complicated assessment process,

and materially aides in reducing the time required for a play

of the game.

Fixed time delays can frequently be obtained from ex-

isting manuals which give a time for various events. In

cases where there is no published estimate for the time to

complete an event the assessor group or the programmer must

establish these times prior to the play of the game.

There are obvious disadvantages to the use of fixed

time delays. In war gaming, fixed time delays allow the

thinking antagonist an advantage in coordination which he
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would seldom be afforded in a real life situation. As we

will subsequently demonstrate, there are instances in which

the use of fixed time delays can well raise questions as to

the validity of conclusions arrived at through simulations

using this type of delay.

Arbitrary time delays are adjustments in game time to

maintain the flow of the game. There are obviously situ-

ations in which rigorous application of fixed time delays in

game time may produce impractical delays in the real time

progress of a specific game while yielding no contribution

to the basic objectives of the game. In these situations

the control group or programmer may assess arbitrary time

delays; or no time delay at all, for some event, or events,

in order to maintain the flow of the simulation at a practi-

cal rate. The advantage and necessity of this procedure is

undeniable; however, it must be recognized that such action

is a reorientation of the game and as such must be considered

as a subsequent phase of the original game.

Random time delays are random variables obeying an as-

suied probability law used to better approximate real time

in a simulated environment. The use of random time delays

will in many cases lend validity to a war game in that it

denies the undue advantage to the planner of exact coordi-

nation of rendezvous times, fuel and ammunition requirements

as functions of time etc.





The use of random time delays overcomes many of the

objections to the use of fixed time delays in simulation,

however, compared to the fixed or arbitrary assessment of

time delays the method of random delays is slow and cumber-

some.

Since there are few instantaneous reactions possible

on the part of a military commander, time delays to reflect

normal reaction times are very important in war gaming simu-

lations. These time delays are generated in response to

specific game actions and vary in length from minutes to

hours depending on the nature of the event being simulated.

One can easily imagine real life events in which a few

minutes difference in the time required to perform a spe-

cific task can produce a difference of magnitude in the out-

come of an event. In a like manner time delays assessed

against planned actions in a war game can produce marked

differences in results.

As an example, let us consider a simple war game, the

"Air Battle Analyzer." (Appendix (1))

The "Air Battle Analyzer" is a scenario type, free-

play war game in which each opponent is given a specific

capability and plan of action. It attempts to provide, and

display, a readily accessible means for recording and dis-

playing chronologically the principle movements and operations

of the different surface and airborne units involved in a

battle. This display points up the interactions between
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different units, in particular their ordering in time.

Let us look at the description of the First Intercept

Range nomograph, enclosure (1) to Appendix (1). It will be

noted that a delay of 3 minutes was arbitrarily selected as

the "delay for decision, " etc. A glance at the Intercept

Range Versus Detection Range nomograph shows that it is

scaled for delays from zero to four minutes.

Using this nomograph, let us look at the intercept

ranges us in;, delays of 1/2 minute and [|_ minutes rather than

the delay of three minutes assuaed in the example. ,/e note

that an assumed delay of l/2 minute, a detection range of 150

miles and a target speed of Mach 1.2 yields a detection

range of 95 miles while an assumed delay of l\. minutes holding

the detection range and target speed parameters fixed at 150

miles and Mach 1.2 respectively yields a ran;;e of first inter-

cept of 65 miles.

Using the Fire Power Analyzer with first intercept ranges

of 95 miles and 65 miles we obtain the expected number of

intercepts for 95 miles as 6,9, and for 65 miles, 5» 7.

Entering the target speed scaling nomograph with these ex-

pected values and assuiing a kill probability of .7 for our

missile while again using a target speed of Mach 1.2, we ulti-

mately obtain 6.1 as our expected number of kills for a 95

mile intercept range and 3»9 as the expected number of kills

for a 65 mile range of first intercept.

Here one should note that the Analyzer missile system

is defined as a one launcher, one director system. One can
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hardly assume that the expected number of kills for a single

missile system can be multiplied by the number of launchers

in the entire defense to estimate the grand total of expected

kills; this would assume independence which does not exist in

reality. As an illustration, let us assume that we are simu-

lating 10 missile launchers defending a perimeter against a

large x^ave of attacking aircraft. Further, let us assume

that at least 1/2 of the missiles launched have a target

which can be engaged by no other missile. This is at least

the equivalent of 5 independent launchers. Then, 5 (2.2

expected kills each) implies a difference of at least 10

attackers destroyed depending only on the extremes in time

delays that could be assessed. Were random time delays used,

discrete times (say fifteen seconds apart) could be randomly

selected according to a probability law approximating the

true distribution of delays and allowing a positive proba-

bility of selection of each discrete time including the end

points.

• If the assumed time of 1/2 minute or of L\. minutes was

known to be correct in every case, there would be no justi-

fication for the use of random times; however, it is intui-

tively obvious that such a "correct time all of the time"

does not exist. In such cases, presumably a random time

from a distribution approximating the true distribution of

times for such events would be more realistic, on the average.
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Thus in the above example, the magnitude of the differ-

ence in the expected number of kills, and the knowledge that

the delay for a decision frequently varies with the decision

maker and the situation, would seem to indicate that the use

of random time delays was in order.
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CHAPTER I

GENERATION OP RANDOM TIMES

SECTION 1

Random time delays for a chosen event in a particular

play of a war game are commonly produced by making a proba-

bility transformation of a random number from a uniformly

distributed population to a corresponding number from a

population which is assumed to follow the true probability

law governing the event.

By appropriate scaling, which will be covered in a

later chapter, this random number is converted to a delay

time, which is a number within the range of those possible

for the event. It is this number which is then assessed

against one of the players as the time necessary for the

accomplishment of that event.

Delay time is itself a random variable, that is, a

function whose possible values lie in some continuous inter-

val of time. The interval is defined as the range of possi-

ble values the delay time may take on.

That the observation of a specific delay time for an

event is a random phenomenon, i.e., one obeying probabilistic

rather than deterministic laws, is obvious from any obser-

vation of the real world. The function which assigns a real

number to each outcome of the event or experiment is called

a random variable and is denoted by X, Y, Z, etc., and a
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particular outcome of the experiment is denoted by x, y, z,

etc.

The probability density function, f (x), of a continuous

random variable X, is a function such that

f(x) ^ where xcR and R = (a,b)

f (x) = elsewhere

and such that

ft (x)dx = 1

A probability density function for a continuous random vari-

able, gives through integration, a description of the rela-

tive frequencies of the occurrence of particular intervals

on the real line.

Associated with these relative frequencies or proba-

bilities of numbers in a continuum is another function,

P(x), such that if x is the number associated with some

outcome of the experiment, then

P(x) = Probability (X ^ x) = P (X ^ x)

and, P(x), is related to the probability density function,

f((x), by

f(x) = 4- P(x)

that is

F(x) = / f(x)dx -oO«£X.<*-<*>

and is called the cumulative probability or distribution

function, (llj.)

If Y is a uniformly distributed random variable on the
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interval |6, l] , then

f (y) =1 ^ y ^ 1

= elsewhere

Letting Y = G(x), where G(x) is the cumulative distribution

function of the random variable, X, which we may identify as

the true distribution of the random variable, X, the delay

time; then by letting

x = <}\y)

we have a correspondence between the random variables X and

Y and, through a knowledge of the distribution function of X,

namely G(x), are able to pass from a knowledge of a particular

x to a particular y and from y to x. If G(x) is the true

distribution of the random delay times of an event, we may,

by taking a random number from a uniformly distributed popu-

lation, produce a number from the true distribution by the

transformation above, called the probability integral

transformation. (l£)

This generation of the random time delay for the event

presupposes the knowledge of the true distribution of the

times for the accomplishment of the event, that is,

knowledge of G(x). Indeed with such knowledge, the gener-

ation of random time delays would be relatively easy, albeit,

laborious.

In practice, the true distribution of times for the

accomplishment of the event will generally be unknown and,
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without this knowledge, we can proceed no further with the

generation of random time delays and must perforce resort to

arbitrary or fixed time delays.

If we would persist in the desire for the introduction

of randomness in the war game we still, however, have two

courses of action open to us.

These are : First, assume some distribution of delay

times arbitrarily; for instance, the uniform distribution

ir.ight be selected or,for that matter, any other distribution.

Second, seek some knowledge of the distribution of the

particular event of interest in the real world.

The remainder of this paper will investigate the second

course of action.

The true distribution of the times for the accomplishment

of the event can be approximated with some knowledge of the

times that the event actually takes when occurring in the

real world. These times (the observations), if they are a

random sample from the true distribution, are independent.

Furthermore, if they are dependent in a known way, we may

still apply many standard statistical techniques.

Having such data, we are faced with a standard curve

fitting problem. First, to determine a curve which best

approximates the true distribution and then to determine

some quantitative measure of its goodness of fit. This

measure reflects the "confidence" with which we will state
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that the curve approximates the true distribution. Classi-

cal curve fitting consists in estimating the parameters of

some distribution, assumed to be the true distribution on

intuitive grounds, by using moments calculated from the

sample. A further refinement, called the method of moments,

developed by Karl Pearson in a series of papers (22) from

1895-1916, sets up a system of objective criteria by which

a particular curve would be selected to approximate the true

distribution. The selection of a particular curve depends

on the values of certain quantities which are functions of

the first four moments of the sample and the system presents

a method of calculation of the curve.

The Pearsonian system is essentially the solution of

the differential equation

dy = y(m - x)
®* (a+bx+cx*

)

where the values of the parameters, a, b, c and m, determine

the shape of the curve for a particular treatment. For ex-

ample, the normal curve is generated if b and c are zero, m

is the mean and a is the variance. Under this system, the

sample mean m, and the sample moments about the mean, m2,

m^, and m. , (i.e., the first three central moments) are

calculated and are used to produce certain statistics de-

pendent on the sample size, N, (the number of observations).
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These statistics are

:

k =
1

k
2
=

m

(N - 1)(N - 2)
m
2

k
3
= N

2

(N - 1)(N - 2)
m
3

V N2 blA" 3(N " 1] ^]
(N - IMN " 2)IN - 3)

where s is the sample standard deviation

3 statistics are used to provide estimates

of 4l and ^ which are Pearsonian measures of skewness

and kurtosis. These quantities j£ and st are used to calculate

/^ c
l/ii

and/^- oL ~t~3 > which are tabled to indicate the

proper form of the curve to be used.

Further, solution of the relations

will yield the values of the parameters of the differential

equation, which need only be integrated to give the density

function.

Besides the labor of calculating the moments of the sample,

there are some problems with the system in that except for the

Pcisson, normal and binomial distributions (18) the moments

of the sample used to estimate the corresponding moments of

the assumed theoretical distribution do not possess the mini-

mum sampling variance; that is, they are not most efficient
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estimates in the statistical sense.

This difficulty may be overcome by the use of maximum

likelihood estimators (19), which, however, require that the

form of the density function (Normal, Beta, Gamma, etc.) be

known or at least assumed. This is not entirely unreasonable

Basically, the principle of maximum likelihood is to

consider every possible value that the true parameter of the

distribution, which we have assumed, might have and for each

of these values compute the probability that the particular

set of observations at hand (the sample) would have occurred

if that value were the true value of the parameter of our

assumed distribution.

Now of all these possible values of the parameter, we

would choose the one for which the probability of our sample

occurring would be the greatest. Instead of working with

the probability density function of the assumed distribution,

we may work with its logarithm L (purely as a matter of con-

venience). By elementary calculus if

dL = and d
2
L , .

where is a parameter of the assumed density function; we

indeed have a maximum and solution of the equation,

dL =
as

for 0, will yield a maximum likelihood estimator for 0,

called 6. In the case of the maximum likelihood estimator
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of 6, if it exists, it can be proved that the quantity

~YfT( 0-Oi is asymptotically normal; and that 6 has

the smallest limiting variance of any estimator. This im-

plies that, as N becomes very large, 6, the maximum likeli-

hood estimator, becomes most efficient. (20)

Unfortunately, for this sophistication of the estimators,

we have sacrificed the crude^ laborious but practical

Pearsonian System, which has the advantage of requiring no

prior knowledge of the form of the distribution function for

its application. But often, there will exist some body of

past experience which will lead us to choose some particular

shape or type of curve as being most probable (as, for ex-

ample, the general concensus that distributions of times

for simple actions performed by human beings will generally

be unimodal).

This knowledge or the willingness in a particular situ-

ation to make an intuitive leap will lead us to assume some

particular type of distribution to be the best approximation

to the true one. In this case, the most fruitful method

will be to estimate the parameters of the assumed distri-

bution by the method of maximum likelihood, assuming such

estimates exist. These methods or derivative ones such as

the Gram-Chalier Series, Edgeworth Series, etc. (18) all

provide the equations of curves which will fit the data to

a greater or lesser extent.
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To recapitulate; having been given a set of data, which

can reasonably be assumed to be a random sample for a par-

ticular event, we would apply the Pearsonian procedure to

determine the shape of the curve to be used as the approxi-

mation to the true distribution in the case of no prior

knowledge about the nature of the true distribution. If

some knowledge of the form of the true distribution is

available, we would estimate the parameters of the assumed

distribution by the method of maximum likelihood. The

principal methods of establishing a quantitative measure as

to what extent the particular distributions that have been

derived or assumed to be true by the above approaches actu-

ally approximate the true distribution are : the Chi-square

Test and the Kolmogorov Test.

The Chi-square Test ( X*") is a measure of the degree

to which a series of observed frequencies deviate from as-

sumed theoretical frequencies over the whole range of values.

The relative magnitude of this discrepancy is defined by

the quantity
fr

,11SM
where f is the relative frequency of the observations in

the interval t, f. is the relative frequency of the assumed

distribution in the interval t, n, is the number of intervals.

This value of %** is then compared with the tabulated values

of the X distribution which give, for various degrees of
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freedom, the probability with which one would expect such a

value of X . We may therefore set up a test of the hy-

pothesis that this sample indeed comes from some assumed

distribution by calculating the value of X and, on comparison

with the tabulated values, accept or reject the hypothesis

depending on whether the observed value of It is greater or

less than the theoretical value at any probability level we

desire. Now it will sometimes occur that several assumed

distributions will fit the data and, in this case, there is

some justification for choosing the one with the minimum value

of K as the curve of best fit. But extreme caution must be

exercised in the application of the Chi-square Test. The

reason for this is that no account is taken in the test of

the distribution of the discrepancies between f . and f at

particular intervals over the range. It is conceivable,

because of the nature of the statistic, that, having calcu-

lated a value of Chi-square by fitting a curve very closely

over part of the range and relatively far away in the other

part of the range, this value would be lower than that which

would be produced by calculating a value of Chi-square for

a curve which displayed a more constant discrepance over the

particular intervals. Yet this distribution of discrepancies

may materially influence our judgment as to the goodness of

fit.

For small sample sizes, where the Chi-square Test

breaks down, we have still available to us the Kolmogorov-

Smirnov statistic, which, in essence, measures the maximum
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vertical difference between the sample cumulative distri-

bution function (a step function) and the assumed distri-

bution. Then comparison of the value of the statistic is

made with the tabulated value as in the Chi-square Test and

acceptance or rejection made on the basis of the magnitude

of the computed statistic.

The statistic (21) for the two sided case is;

D = sup |Pn (x) - P(x)|
all x

where P(x) is the assumed distribution function

and

F(x) =0, x * X
(1)

= k
xu)* x-Vd'

= 1, **x
(n)

j = 1,..., n - 1

is the sample cumulative distribution function of the ordered

observations.

The statistic is itself the least upper bound (sup) of

the difference between the cumulative distribution functions

taken over all the values of the argument. It should be

noted that whereas the assumed distribution P(x \> is con-

tinuous and non-decreasing, the sample distribution P . .,

will be discrete and so constant over each interval, for ex-

ample,
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for n = 6

iii(P) can be considered as having come from a random

sample on a uniform distribution in the interval [0,l] (19)

and, hence is independent of the choice of P, so the

Kolmogorov-Smirnov Statistic is distribution free. This

statistic has an advantage over the Chi-square Test in that

it deals directly with the value of the observations and

avoids the problems inherent in the summing process of the

Chi-square Test, which, as has been mentioned, may tend to

obscure lopsided fits. The choice of one or both of these

tests of goodness of fit will, of course, depend on the

particular situation and the degree of approximation desired.

This brief summary has been intended as the general

outline of the procedure to be followed, if sufficient data

is available for approximating the distribution of delay

times. It should be borne in mind that the importance of the

knowledge of an approximation to the true distribution

function must justify the expenditure of time and effort

necessary to obtain it.
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SECTION 2

In order to apply the techniques discussed in Section 1,

it is necessary that the analyst be provided data. Pre-

sumably the procedure for obtaining the requisite data would

be to analyze times measured for particular events under

actual combat situations. We can immediately foresee diffi-

culties in this approach.

First, there is little data recorded in sufficient

accuracy and detail to provide adequate estimators for such

parameters as the analyst might deem necessary.

Second, were the data for some particular event availa-

ble, one could hardly assume that this data would yield the

average times associated with similar events unless the

event had been run, and the times recorded, a large number

of times.

Last, the time required and the expense of the neces-

sary data search is prohibitive.

One might next logically consider conducting experi-

ments in real time situations and simply recording the

desired times in the context of the experiment. Quite a

bit of work has been done in this area.

In the course of this thesis, a careful search was

conducted of existing published data. Contact was es-

tablished with the U.S.A. Combat Development Experimentation

Center, Port Ord, California, and a thorough search of their
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published and unpublished experiments yielded little of value

in determining the underlying distribution of the event being

simulated. This is not surprising. The experiments conducted

by ODEC, like those conducted by similar organizations, are

extremely complicated. In each case, the experiment is de-

signed to consider only some specific portion or element of

the entire event. The use of scenario type situations and

arbitrary time delays, as defined in the introduction to

this thesis, preclude the results of the experiment being

used to describe the distribution of the entire event.

In general, the conduct of experiments in real time

situations to estimate the parameters of an event in an

actual combat situation is prohibitive for one of the three

following reasons

:

First, the actual combat situations desired are almost

impossible to duplicate.

Second, the near simulation of actual combat situations

is, not only dangerous to the participants, but prohibitively

expensive.

Third, the number and diversity of the events it is

necessary to describe is beyond effective description.

In light of the above, we are forced to conclude that

in general, the procurement of the necessary data, from past

actions, or by experimentation, is not practical for the

majority of military events.
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The following chapter will suggest a third source of

information by which it is felt that a form of data suf-

ficient for the description of the times associated with

military events can be obtained.
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CHAPTER II

AN ALTERNATIVE USING MINIMAL DATA

SECTION 1

In Chapter I we discussed the difficulties entailed in

attempting to describe military events using recorded or

experimentally obtained data.

There is a third possible method of arriving at the

desired parameters for the underlying time distributions we

desire to describe. This method entails the use of pro-

fessional estimates. Professionals, utilizing their

background and experience in a particular field should logi-

cally be able to give a reasonable estimate of the time to

complete a specific event under certain conditions.

This method offers advantages over the two mentioned in

Chapter I in that it is cheap, and with the availability of

professionals in the field of interest, quite rapid. It

suffers from two obvious shortcomings

:

First, what estimates are you going to ask the pro-

fessionals to make?

Second, how valid will these estimates be?

There is really no good way to check on the validity of

subjective estimates short of running a series of the same

experiment and comparing the mean time of the experiment with

the subjectively estimated time for the same event.

The answer to neither of these questions is readily apparent.
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It would logically seem that in answer to the question,

"What estimates do you want from a professional? " One might

reply, "What estimates can he be expected to make with

reasonable consistency?" Obviously, if we are to request an

individual to furnish answers based on his experience, we

must ask questions he has frequently asked and answered for

himself.

In this light it is believed that the professional

military man can interpolate or extrapolate from the domain

of his experience to furnish the following four estimates

for many events.

1. The shortest possible time in which the event can

be completed, call it t .

2. The most likely time required to complete the event,

say tm .

3. The most pessimistic time to complete the event,
A
tp.

l±. The percentage of times, P, the event takes place

within some given time, centered about t .m
Where t , t , t , and P are estimates of the real values

o* m p

to, tm, tp and P.

Before we attempt to answer the second question, let us

examine subjective estimates in greater detail. Subjective

estimates are not new. The military commander always has,

and probably always will be required to use his estimates
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and those of his staff to effectively plan an operation.

How does he check his estimates? If the operation comes off

somewhat as planned, he has done what we are unable to do.

He has estimated the time for an event and then run an ex-

periment which furnishes an immediate check on his estimate

of this time. Prom each operation he learns. It is this

equity in experience from which we must draw our estimates

for events we cannot otherwise practically measure. One

would generally feel that if a time estimate from one

knowledgeable individual was good, that the average of the

estimates of ten of these professionals would be better.

Ideally it would be hoped that as the number of qualified

persons estimating the time for some event was increased,

the average of these estimates would approach the true value

of the parameter being estimated.

It is under the above assumption that the use of sub-

jective estimates is justified.

How are subjective estimates obtained? The pollsters

have long realized that the obtaining of subjective estimates

from a population is a delicate and difficult problem.

Through experience, they have cane to realize that the phrasing

of the question, the occupation of the individual, and even

the time of day can affect the answer received to a particular

question. It may well happen that a wide variation in the

response to a particular question is the result of a poorly
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defined or ambiguous question rather than a demonstration of

the recipient's inability to furnish the hoped for response.

In general, subjective estimates are obtained through

either an interview or through response to a written question-

naire. Both methods have their shortcomings. The written

questionnaire generally suffers from poor response, misin-

terpretations due to ambiguous x^ording, and the failure to

distinguish between those persons unable to answer the

question and those who are able, but unwilling to answer. The

interview (while probably furnishing more accurate information)

is more costly, frequently inconsistent due to variations in

the delivery of the question, and difficult to quantify.

Since in our particular case point estimates of specific

times are desired, the use of written questionnaires would

appear to be the more practical approach.

In an attempt to overcome some of the objections to the

written questionnaire, the following rules to be used in

obtaining subjective time estimates of military events have

been set down.

1. Select a group of military professionals capable of

furnishing time estimates for the requested events.

It is worth noting, that since we are after t , t ,o m
A A
t and P for particular events we must choose the

group to fit the events, not the events to fit the

group. Where possible, a homogeneous group comprised
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of individuals with various specialties should be

chosen. This will allow a comparison of the

stratification within the group, to guard against

the consistent, but biased, answer.

2, Assure response to the questionnaire by follow-up.

Many persons who fail to respond to a questionnaire

through indifference are capable of producing an

acceptable answer,

3. The questions to be answered must objective; fill-in

the-blank type questions will facilitate the ulti-

mate reduction and comparison of data.

ij.. The information desired must be defined carefully

and precisely on the first page of each question-

naire. Only an introduction should be required

from the administrator of the questionnaire. Every

effort must be made to keep the questionnaire as

short as possible.

5. The questionnaire should be carefully pretested by

a trial group to check the adequacy of event de-

scriptions and guard against ambiguities, etc.,

prior to general use.

6. The data resulting from the experiment must be

carefully evaluated.

Following the above listed guide, a questionnaire

covering ten hypothetical military events has been prepared,
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(Appendix (2)). This questionnaire is directed to the ex-

perienced Marine Corps officer. The officers are assumed to

vary in rank from Gap tain to Lieutenant Colonel, all with

service in excess of ten years.

Let us take the definitions for t , t and t from our
o m p

sample questionnaire. This more precise definition will be

required when techniques are discussed for analyzing the

data from an experiment.

t s most optimistic time = The minimum time required to
accomplish the action if all
circumstances, personnel re-
action, weather, terrain,
etc., combine to work in your
favor.

t s most likely time = The time required to accomplish
the action under "normal" circum-
stances. "Normal" to be con-
strued as those day to day
conditions you would expect to
encounter under circumstances
such that the described action
could logically be assigned.

t = most pessimistic time = The time required to accomplish"
the action under extreme adverse
conditions, and poor response on
the part of participants. The
conditions are not so severe as
to preclude accomplishment of
the mission, but weather, fatigue,
human error, etc., all exercise
strong degrading effects.

Inspection of the questionnaire will indicate that each

question is followed by the statement

:

"Percentage {%) of times the event will occur within

<C hours/minutes of the most likely time."
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This question is designed to obtain a feel for the a-

mount of the distribution located within a certain range of

the most likely time. Answers to this question afford the

experimenter a method of obtaining a rather crude, but

nevertheless necessary estimate of the central tendency of

the distribution.

In the figure above one can see that h = Percentage ,

2<f

where the shaded area under the arbitrary curve is the per-

centage estimate of the times an event will occur within 6"

units of the most likely time.

It is apparent that the choice of <T is important to the

outcome of the experiment in that the ultimate selection of

an approximating distribution may depend on h. As can be

seen from the figure, the smaller our choice of cf , the more

accurate our estimate of h. It is therefore desirable to

choose the smallest interval (2<f ), for which the experimenter

can obtain consistent estimates of the percentage of times an

event will fall in this interval. The question to be answered

is probably more psychological than statistical. How small

an interval can be chosen such that reasonably consistent

estimates can be anticipated?
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In the questionnaire (Appendix (2)) & was chosen such

that 2 £ = R or 25 per cent of the range.

In most cases the experimenter can himself furnish a

crude estimate of the range of the event to be considered.

It would then be a relatively simple matter to prepare sever-

al questionnaires using the same questions, but varying £ as

a function of the experimenters estimate of the range. In

this way one could obtain a feel for a subject's ability to

discriminate between various ranges about the most likely

time.

Before we proceed to describe methods for evaluating

data, it is best that we discuss some of the assumptions we

are forced to make in conducting our experiment in this

manner.

When we decide to use subjective estimates as a means

of securing t , t , t and P, we are assuming that our
o m p

sample values are distributed in some fashion about the true

values of these parameters t , t , t and p.
o* m* p

We further assume that these estimates are so distri-

buted that the central limit theorem holds. Thus, where N

is the number of estimates, t , the mean of our estimates

for t , is normally distributed with mean tQ and variance

decreasing to zero as N-* oo , irrespective of the underlying

distribution of t . The same holds for t , t and p.o m' p w
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Therefore, under the foregoing assumptions, and for

fairly large N we feel that we know t , t , t and P quite

accurately.

We are fortunate that our method of sampling by question-

naire is relatively inexpensive. This allows us to choose a

sample size large enough to insure that our experiment falls

within the domain of large sampling statistics as defined

above. This permits us to consider our estimates for t ,

etc, as being approximately normally distributed.

Let us assume that 100 of the questionnaires in (Appendix

(2)) have been duly completed and returned. What will we do

with the data? How will we decide whether these estimates

are adequate for our needs? What tests should we run?

We want estimates for t , t , t and h. Let us first
o' m' p

compute these for each event.
too l

- lj lj •• •, too

5 si- ? t •• J - <; *>
'

'
'j '°

t 100,6-
L©<-> A

fcS ' where tQ
.. is the mo3t optimistic time

estimate from the ith questionnaire for the jth event.

a ^
t and t . would be calculated in a like manner,
pj mj —

A A A.
As previously defined, h = Percentage . Thus, h; = Jz^

i oo 2 £ <2&j

1 Vn • Where P.- 1 is the estimate from the ith
2oT^ Zp" u

questionnaire for the percentage of times the jth event would

fall within t& of the most likely time.

Taking say the jth event, let us make a linear plot for

Pj

A A. A A
each of our parameters t . t t . and P.; , to investigate
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the possibility of outliers or sample stratification.

When we take our sample of the time estimate for a

particular event we are assuming that all of our observations

in the set, comprised of our sample constitute a random

sample from the same population. For various reasons there

will occasionally occur in the sample a small number of

observations which differ considerably from the others.

These observations may cause us to doubt that all of our

observations are truly from the population we intended to

sample.

As an example let us assume we have plotted t for the

jth event. Let us further assume that this linear plot indi-

a
cated that 99 of our 100 estimates of t were reasonably

grouped, but that the remaining, say the kth observation was

significantly different from the rest. We cannot automatically

assume that this kth observation is an outlier and thus delete

it from the sample.

We can however delete it for cause. If on checking the

kth questionnaire we noted that it had been completed by a

twenty-one year old, 2nd Lieutenant, Disbursing officer,

while the event being estimated was described as, say, the

time to conduct some facet of an air operation, we would

probably be safe in assuming that our kth observation was an

outlier. In this event we could delete the kth question and

recompute our estimates based on a reduced sample N, where in
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this case N = 100 - (samples rejected as outliers).

In addition to the rejection of outliers for subjective

cause there are several objective statistical tests designed

to reject outliers at a certain confidence level. Since we

are dealing with a rather large sample, the number of outliers

that would be rejected statistically that could not be re-

jected for subjective cause is considered not to be sta-

tistically significant.

Again consider the linear plot of say t for our jth

event. We might well observe that our sample estimates were

in say two or three distinct groups. In this case it might

pay to stratify our group by specialty say, Infantry officers,

Aviators, Supply officers etc. If our event to be estimated

was described as an infantry action we would probably profit

by taking our estimate of t from the sample of officers most

closely associated with this type of an event.

Again this reduction in sample size for cause would re-

quire a recomputation of all of our estimates.

For the remainder of the discussion on sample evaluation

let us define

:

N = the sample sizes as reduced by outliers
and/or stratification thus for example

* - ift .

° IT 4, olJ

It will be noted that throughout 'this discussion of

sample evaluation we have not talked of the accuracy of an

estimate. As stated earlier, there is really no way we can
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judge the accuracy of an estimate. We can however discuss

the consistency of our estimates. Probably the best measure

of the consistency of an estimate, say t 9 is the measure of

its variance.
v , J - J_ V f £ £ ^

When would our sample estimates be rejected? The answer

to this question will depend entirely on the user. Of the

ten events described in our questionnaire, very likely some

will produce variations which would make one hesitate to use

these estimates, say Var t >e , where € is some number es-

tablished by the user prior to conducting the experiment.

In this case, the only conclusion we can draw is that either

the question was ambiguously worded, or that the professionals

answering our questions were unable to give a satisfactory

response.

What can we do if our estimates for a particular event

have such wide variation as to be considered inconsistent or

unusable. If the event is of relatively long range and it is

still felt that random time delays should be used, there

remains little recourse but to re-word the offending question

and distribute it to another group of professionals. Where

the event is of relatively short range and the variations in

the estimates for the required parameters are large, one might

feel justified in the use of fixed or arbitrary time delays

in assessing the time to complete this event.
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SECTION 2

We have previously seen that in order to generate the

random times we seek, we must have some approximation to the

probability distribution underlying these times. Since data

of the type usually used to derive such approximations is not

available, we have suggested use of data of a type which is

available. In this section, we shall examine what effect

possession of such data would have on our knowledge of certain

probability distribution laws.

Table II-l contains some common probability density

functions. An examination of the table indicates that in

each case, f (x) is dependent upon some constants listed in

the column headed "Parameters." In order to specify the

probability laws best describing real life events, it is

necessary to know both the form of the probability density

function, and the value of its parameters. Hence, if we wish

to generate a random time to simulate the time required to

conduct a specific operation, we must have knowledge of the

form of the probability density function best describing the

distribution of times, and we must be able to determine the

parameters involved.

For the present, we will assume that we know the form of

the probability density function, and that it is one of those

listed in Table II-l. We shall further assume that we have

precise information regarding certain aspects of our event,
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which will be the conduct in a finite time of some military

operation.

Specifically, we shall assume that the following are

exactly known;

tQ
- The minimum time which could
be required to complete the
operation.

t - The most likely (most frequently
encountered) time required to
complete the operation.

tp
- The maximum time which could

be required to complete the
operation.

Henceforth, since our random variable is time, we shall de-

note it by T, and its density function by f (t). Therefore,

= P |TS<7 I f(t)dt a> t[t<c] = f
O

where the lower limit of integration is the minimum time.

Times less than t or greater than t have no significance

for us. If we make a grpahical representation of f(t), it

would appear approximately as

where t , the minimum time is the zero of our t axis. tm is
o m

the point at which f (t) has its maximum value. This is denoted

as the mode of the density function.

The last item about which we shall assume to have exact
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knowledge is

h - the height of the density function
at its mode.

With the assumed information, we shall define

R = t_ - t as the range
P o

RQ
= tm - t as the premodal range

R = t - t as the post modal range
P P m

R = R + R
o p

Recalling that each probability function has associated

with it certain parameters we shall now proceed to develop

knowledge of the parameters from the information assumed above.

The seven density functions from Table II-l will be dealt with

in turn.

a. The Uniform Probability Density Function

f<*>= ^ ** ***
clearly ~ ° e/̂ ^ e

The density function has no mode as such, and its height,

i.e., h, is everywhere constant, and completely determined by

the range,

b. The Triangular Probability Density Function

/o(A>- a) -*

Since the range is 0£%-fy6, we must scale t ^ t£t
o P

into that range. If we let





^ ^ ^> , then

° since the mode occurs
at x = a and. t = tm

and /O — T^ — t = ^2

then /?^y - 2{-6-?a) . ^ , ^ ,

CO

= O elsewhere

and h is determined by the range for this density function

also.

c. The Normal Probability Density Function

This density function is determined by^y and d , its

mean and standard deviation. The mean occurs at the mode

which implies

and fft*,) = £ =r -Z— or £ =z -L.

The value of f (t) at a distance ^<4 from the mean is

approximately 0.0001. Between (-y - l\. <£ ) and ( y*/ + k <5 ) t

to at least four significant places, the area under f (t) is

unity.

In this function, t is permitted to range from - oo to

+oo, and we have limited ourselves to consideration of times

with the finite range t to t . Two situations can exist,
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1. R and R can both be greater than or equal to k <$
XT

or

2. one or both are less than k-S*

Prom the preceding discussion of values of f(t) at \\.£ ,

it may be seen that in the first situation, we can closely-

approximate f (t) by fee) == /? ey/^ fl 7rA
s
fr-tr7f]

using /_ L and ^ - ^

The second situation definitely implies that although

the time required to complete the operation may be normally

distributed, the density function must be cut off at one or

both ends (truncation). This leads to the rejection of use

of the normal density function under these circumstances,

and to the truncated normal density function which is

presently to be discussed.

d. The Gamma Probability Density Function

^^ =
Of/ 0«" **e^ O±?t<eo

— O elsewhere

If we set d f ( 76 ) = and solve for ?c , we find
ax

that the mode occurs at

% = CK/3

Since f ( X ) has its origin at zero, we must rescale our

time so that t corresponds to 0. To accomplish this, let

9C = zf - to
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The mode then occurs at

lis ^ = ^f*-v"*'& #s <-

= O elsewhere

Using the above, and evaluating the function at tm ,

^6/A}//»*" ^ * e

Making use of Stirlings Approximation

4 ~ ; ?4tt 5 J fez***"
**

which reduces to

/4 ^ ,— ^—

•

ok /& ~ —:£-r

r

and <* = /^^ ^ ZTf /?o n
Thus if our maximum time had no bound, h and R are

sufficient to determine approximations to cX and (3 .

It should be noted that the approximations depend on t ,

t and h, and are not affected by tp.

Under our conditions however, we do have a finite maxi-

mum time. This implies that our density function is truncated

at that point, and in order that

/ — I 'CvJ <JU , we must adopt

* kh





some alternative. There are three readily apparent from

which to choose

(a). We may consider that there exists at t a discrete
P

probability mass point where the probability concen-

trated at t is defined by

J cr/i*" &'*)" Q' t^SL

c/t

fft) = ot/#«" ft't*)*e~^ t*t<tp

— O elsewhere
(b ) v/e may define

S O elsewhere

4«

then

where A — I
- /V j. v* - - £. ~A

\
and is regarded as a constant

(0)
-

f(t) =
qTJs**

&<)*e ~ **^ raay

be asymptotically zero at t , and the probability
CO

rH) d"6 == ° , in whichI
case, we regard t as being so large that its mathemical

effect is that of co .
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Under alternative (a), we have in effect established

that the probability at t may be disproportionately large,

but have not invalidated our determination of an approxi-

mation to the parameters o( and /G .

Under alternative (b), the probability of a time greater

than t has been redistributed over the interval I t*
$
t^\ ,

but it has presented us with a third parameter in f(t). The

effect of this is to invalidate our approximation to oi and

/3 . The mode will still be located at t~tc ~ cA , but

with only the information at our disposal, we can no longer

obtain a closed expression for cX , /3 and A • Numerical

methods with the assistance of the Tables of the Incomplete

Gaiijma Function (16) must be applied to evaluate the

parameters.

Under alternative (c), we recognize that there exists

some finite

^ =
\

f(t)ctt where ^ ia

the measure of the probability that a time will exceed the

maximum, but regard £ as being so small that it may be neg-

lected. This implies that

1).6





Since 0{ > - / and /3 > O , the constant term ^J^#o(+/

can only have the effect of reducing f (i^ t and hence, if

This will occur if

^- » /e^ or

^ » or^,/e

£Z»«*, but «*-*i

so that if

Ji,/e
s/ /xo j we may disregard ¥ ,

e. The Beta Probability Density Function

Of A3

= elsewhere
The mode occurs at

Since the range is - 1, we must scale our times as

follows

Let -X sz t ~^° = ?- fo

The mode occurs at t/rf or ^ =r 2^» - 1* _ /&Q

*- = j&l. = /eo





/# =
sfe /2k> where k is some constant

Svaluating^* j at /^
to be determined.

** -.4-6.

where the factor —'— is required by the scaling .

Simplifying ^ _

Again making use of Stirlings Approximation,

which reduces to

Yz?r V4
or

4/?o&

(ill) £mr= Ay^w/eo/^
a relationship which can be solved to provide a value of

h. Since from (U) c% = Jz /?c

fi -- &/Z/=>^
the solution to

(tit) completely determines Of p @ in terms of /fj f /©»

it should be noted, that the equation (t'ii) in solution

places a bound upon h.

ly > ——-=- as lower values





of h would give imagirary roots in solving for*.

This implies that although /?<, and /?p do not determine

h for the Beta distribution, they do provide a lower

bound.

f . The Log Normal Probability Density Function

= O elsewhere

The mode of the density function found by setting

^TJ" / fc) = o and solving for x is

Postponing discussion of the upper limit of the range

we scale

so that t - to * X •

At * = £,-&
J # = e «-* z

or

"*>

=

A=-^k exp H* (**~ *f}

-C J™ ' l o X upon squaring.
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3y means of a simple graph of rr" & a value of n

can be selected such that yy^" 77 — Zffr? /x?o . -/*7

will then be & and 7"7-f&,/? will equal -y •

As was the case with the Gamma density function, we have

so far been considering a density function whose variate is

without upper limit, as applied to a time variate with a

finite upper bound. Also as was the previous case, our de-

termination of the parameters was independent of this upper

bound.

In general, we may choose from three alternatives to

resolve this problem.

a. Regard t as a point possessing the following

probability mass

(/) i^h^f^f-^^^-f}^
which leads to

IV above for t = t
P

elsewhere

As long as t > t , the method of evaluating ^ and d
P

remains valid
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b. Regard

AV2Td(t -to)
L J

for t<t^t/^'o

O elsewhere

where

This has the effect of introducing an additional

parameter A to consideration, and imposes the

requirement for at least one item of information other

than t , t , t and h for a unique determination of
o m p

"V, <4 and A.

may be asymptotically zero at t which would imply

that

/ f(t)dt = O

t as being so large that the probability of exceeding
ir

it is zero. This requires that

^ &%
(%*fer«4) » i which reduces to

-& /€ » <** + <* Sz
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g. The Truncated Normal Distribution

-f fa) » O elsewhere

The mode occurs at <c{ , and our assumed information

'

leadSt
° /*>^^

for 4 5 if f 2jo

f (t) =z O elsewhere

It should be noted that A plays the part of a constant,

but it is another parameter which must be evaluated.

Now,

i.) f*r

)

M * *-jrffc
isa

constraint on the two parameters A and ^ , but with no more

than this, we could find any number of A's and <^ s and thus

any number of possible distribution functions.

What is required is one further piece of information

restricting a point on the curve traced by f(t). The value
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of f (t), the height of the density function at either end

point (t or t ) would be sufficient,
o P

If such infor:nation were in our possession, it could

oe used as follows

:

// /"> .
\**

2.

and from c) t/9 s q p^z-

w .ich leads to

could uniquely determine c3

If however, all that were known was that f (t) was

asymptotically zero at t , then the above would provide no

assistance in determining ^ . Under the assumption though

that f(t) = at tp , and that (f(t) >0 at tQ (i.e., rt <.

dp ), then .p ^ A. ^ 1. This follows since t ^ t and

we have not truncated :nore than 1/2 the area under the basic

normal distribution. Farther, the basic normal distribution

approach zero sooner than f (t) since

#*;- £d^l and A<1
A

Implies f(t) ^> f (t) for any value of t

S3

will





We also know from properties of the normal distribution

that a
j

InW ~
' oooi — O so that

46

f(t) I = '£££1 or . OOO* < W\ < •
0002

We can proceed to approximate a value for £ by

assuming that f(t) = at t implies
P

.0OO1< fft) L < >001

Under this assumption, using tables of the normal

distribution it can be inferred that

SSd < (t/o-tm)< 4<6

Z-56 < /ZP < <?<4 y and that

R can be used to obtain an approximation to SP
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Section 1 outlines the general statistical procedures

to be followed in attempting the normal pattern to determine

the probability laws underlying a real-life event. Under

many circumstances, these procedures cannot be followed.

It may be that the cost of carrying out the necessary repe-

titions of the event is prohibitive, or it may be that the

event is an infrequent occurrence of nature, happening too

rarely to obtain a sufficient sample. At any rate, the data

necessary to follow standard procedures is not available.

In the large majority of cases, the times required for the

completion of various military operations fall into this

category.

T,fl!hat we shall next attempt is to examine some procedures

which might be indicated in such cases, but where certain

specific minimal data is available.

Given that we have

t an estimate of tQ , the minimum time

required to conduct the operation,

/v.

t an estimate of t , the most likely

time required,

/\
t an estimate of t . the maximum
P P

time required, and
/\
h an estimate of h, the height of the

underlying density function at tm ,
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What knowledge can we deduce of the underlying proba-

bility law?

In Section 2 of this Chapter, it was shown how tQ , tm ,

t and h could be used to determine the parameters of a set

of Probability Density Functions. It should be recognized

that at that point, the discussion was conducted from the

position that there was no search for the form of the density

function, and that t , tm, t and h were regarded as known

constants of the problem. Here we are dealing with estimates

of the values of those constants, and have no real knowledge

of the form of the density function.

If for the moment, we assume that we have accomplished

one half our task, and have determined the form of the density

function which we are seeking, we then have only to estimate

its parameters to complete our approximation to the proba-

bility law underlying the event. Since in Section 2, we

related these parameters to tQ , tm , t and h for seven

probability density functions, if the form with which we are

/\ y\ /£. /^
dealing is a member of that set, we can use t . t , t and h

o m p

to obtain estimators for the parameters. If the form of the

function is not from that set, it will be assumed that ma-

nipulations of the type performed in Section 2 will produce

some approximation to its parameters.

Having thus rather summarily disposed of the problem

of parameter estimation, we turn to the much more difficult





problem of determining the form of the probability density-

function. The basic information we possess is that we have

estimators for the following points,

y\ <\
t Z"> tp

and are attempting to define a unique curve which has its

origin at t , passes through the point a, which is at a

height h above t , and terminates at t_. The curve is^ m P

further restricted in that its highest point must be at a,

and that it represent a probability density function f (t).

The latter implies

f(t) > O and

7 = \ fft)ctt

Under certain circumstances, almost any of the seven

probability density functions discussed in Section 2 will

generate such a curve. It must be stressed that these seven

were selected for discussion only because they are among the

most frequently encountered , and easy to work with. It would

be more likely that there are an infinity of such curves,

each with an associated f(t). With no further information

available , we cannot, in general hope to cope with any* such
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function dependent upon three or more parameters. Thus, we

are forced to restrict our attention to examination of those

functions for which we possess enough information to enable

us to proceed.

At this point, it should be admitted that we may have

already excluded the true probability density function^if it

exists. This should not however be a matter of major concern.

Even in the more conventional statistical problem (Chapter I),

no claim is made that the "true" probability density function

results. What is a result, is a density function which is

a member of a set of known, in general tabulated, and con- /

venient density functions, and which "best fits" the data.

Even that much depends on far more data than is available

under our present assumptions.

Since the seven functions in our set are mathematically

well defined, and in general, well tabulated, we shall seek

a "best fit" from that set. We shall first proceed to ex-

amine each of the various functions in turn to see what

effect the data can have upon their applicability.

The uniform probability density function is dependent

only upon its range tp
- t = R, and therefore having t -

t R as an estimate of the range, the function would be
P
determined. However, the value of h — 1 is also determined

R
by R. This would infer that we should reject the possibility

that the uniform is our function if h is such that it differs
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considerably from 1 .

IT

A very much similar situation exists for the triangular

probability density function where h = 2. If h is consider-

ably different from 2, we would reject the triangular from

consideration

,

As developed in Section 2, the 3eta probability density

function also has a restriction in that h y

Therefore, we would reject it from consideration if h were

/
less than

/?./?'P
Consideration of the normal density function involves

several factors. To begin with, it is a strictly symmetrical

distribution. Unless it is to be truncated, a case presently

to be discussed, the value of h fixes its standard deviation

O . If this is the case, and either /k? or /^> are less

than ij. £ , then there are contradictions to our assumptions

in Section 2, Chapter II which rule out its use.

In Section 2, it was seen that unless certain assumptions

are made, our assumed information is insufficient to determine

the parameters of the Truncated normal probability density

function. Hence, if we consider this density function, it

must be with the assumption that the truncation is one-sided

Even after making this assumption, we are left with only an

approximation to d> where

Z-5 6 < fiP < 46 or

6 = -A
v5.& t anc* unless
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*-\ /
ei is such that h == >— *\ << where

A = C t=
T^3 e*P{-^(i-t>~?}<Jt , then

our assumptions will lead to contradictions with our data.

The differences from the above described equalities and

inequalities upon which to base rejection is subject to the

users latitude. In all cases, x^e are now discussing estimators

rather than the true nature of R , R , and h. The magnitude

of a difference sufficient to cause rejection can be es-

tablished only upon consideration of the accuracy of the

estimates and the desired bounds for approximation.

For the remaining two density functions, given our as-

sumed estimators, a probability density function can be

cranked out which will fit the three desired points, but it

will have a discrete mass point at t . Should the height of
XT

this mass point exceed h, then we fail to meet the criteria.

Any further attempts to determine which provides a "best

fit" run head-on into the discouraging fact that we possess

no other points with which to measure "fit". At this point,

our excursions have reached a stage beyond which future

progress can result only with more data. Under our hy-

pothesized conditions, we cannot extract more data.

Since further theoretical progress seems barred, we

shall now examine the origins of the problem to determine
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whether the requirements of the problem and the bounds upon

an acceptable solution can provide instruction as to future

routes to pursue.

Basically, we are searching for a method of producing

random time delays to assess against participants in a war

game. These time delays represent the time which might be

required for the accomplishment of the real life event which

is being simulated. The only tools considered available to

A» SK /\
the assessor are a table of tn , t , t for the various

o' m p

allowed events, and a uniform random number generator. This

latter is a device, which upon activation, will generate a

random number drawn from a population with a uniform distri-

bution on the interval I O - 99
\

. Specifically, we are

attempting to provide for the assessor another tool—one

which will convert such a random number to a random time T

where t - T - t and where T has a distribution roughly

corresponding to the distribution of occurrence times for

the real-life event.

There are three requirements for any method to be gener-

ally acceptable. It must be simple, rapid, and a reasonable

approximation to reality.

War games, computer, manual or composite are extremely

complicated models intended to simulate a most complex real-

life situation. Any complication introduced into a component

of play of the game must have its effect measured in the over-

all game atmosphere. The components do not exist in vacuo,

61





they exist to fulfill specific requirements for simulation.

Unless relatively simple, the complication they introduce can

over-balance the benefit of accuracy of simulation. -

Present day sophisticated war games are lengthy affairs.

A manual game may take as much as six months for completion.

Computer simulations are accomplished in minutes or hours,

but behind the play of the game is a programming effort that

is measured in man-years. Any refinement of methods or intro-

duction of new components can ill afford to further extend

time requirements.

Most present war games utilize the method of fixed time

delays, i.e., each event has associated with it a fixed time

to be assessed for its accomplishment. Those that differ

from this method generally apply uniformly distributed random

time delays, with the implication that all times within the

range for an event are equally likely. On no more than intu-

ition, neither seems a very close approximation of reality.

Any refinement of method should have some closer agreement to

the way in which real times vary.

Having thus reviewed what it is we are trying to do,

and the bounds on our method for doing it, we proceed to ex-

amine the effect of these bounds upon selection of a distri-

bution function.

The uniform distribution is the simplest of our seven.

The conversion of a uniformly generated random number
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requires only a scaling to produce a random time

This ease of conversion makes any use of a uniform distri-

bution quite rapid. It has the important disadvantage that

in many circumstances it is not even a reasonable approximation

to reality. One hardly expects that in very many events the

minimum or maximum time will be observed with equal likelihood

to any other time.

The triangular distribution is the next simplest. It

possesses several features expediting work with it. The

density function is completely deteriiined by the extremes

of the range and the position of the mode. For a given tri-

angular distribution of T
J tQ :5 7~ ^ u*> (determined by

the position of the mode), there is a corresponding distri-

bution of "X-, ^ X is i . By means of a table or graph

of the applicable O— 1\ triangular cumulative probability

distribution function, a uniform random number O - S9 I

can be converted to a triangular random number O — iJ ,

This can then be scaled to the interval t ~ tP \

"to pro-

vide a random time. This should give a closer approximation

to reality than the uniform distribution. At least, times

at the extremes of the range would have the least frequency

of occurrence, and according to the position of t , any

degree of skewness may be introduced. If we assume that the

mode will occur at some discrete point — •99| we need

only concern ourselves with 100 triangular distributions to
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have a set of graphs or tables which can be used to handle

any case. In fact, only 50 graphs will suffice since for

distributions skewed to the right, we can use a corresponding

distribution skewed to the left, taking 1 - the triangular

± -r- ^ 2
random number, and scaling it to f — ' — V° '

The i3eta distribution involves a greater number of

calculations than the previous two distributions. Its

parameters must be calculated from the data, and for a fixed

set of values of t rt , t and t , there are a variety of curves
O* m p* •

which must be restricted to one unique curve by use of h.

That is to say that for a beta density function on O - /

and a given mode, there are many curves possible depending

on the parameters. The distribution, once the parameters

have been determined is conveniently handled with the as-

sistance of Tables of the Incomplete Beta Function, (17).

Again, by use of a table or graph of the cumulative proba-

bility distribution, a uniform random number O — 9 9

may be converted to a beta number O — 1 which can be

scaled to \ i:
" ^/»

|
• Quite different from the preceding

case is the number of tables or graphs required to handle

the possible distributions. Since there is no unique distri-

bution associated with each modal position, there are many

graphs required for each such position. Intuitively, the

Beta distribution may more closely approximate reality than

the two previous distributions. Its height at the mode can
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vary Independently of RQ , R and R, at least as long as

fj y . Depending on Its parameters en and /S
/to rip

the frequencies associated with the extremes of the range,

particularly the maximum end will be less than with a tri-

angular distribution over the same range.

Although not simple, the normal distribution i3 probably

the best known of our seven. There exists a greater body of

literature about it, and more readily available tables than

for any other. Unfortunately, we have no assurance that we

can use it in other than truncated form, which to some extent

degrades the utility of existent literature and tables. For

any event which has a skewed distribution, non-truncated use

of it would represent a distortion of reality rather than an

approximation to reality. For that reason, any further dis-

cussion of it will be continued in the Truncated Normal where

the normal may be considered a special case.

The gamma and the lognornal distributions both have

features which tend to complicate their use for our purposes.

Both density functions are unbounded at their upper end. As

was discussed in Section 2, there are three courses available

in terminating the functions at t , truncation, consideration

of a discrete probability mass point at t , and treatment of

the functions as asymptotically zero at t . If truncation is
XT

adopted, we can no longer make convenient approximation to

the parameters. If we adopt the idea of a discrete mass point

at t , in generating random times, we will produce t more
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frequently than some times less than t . The third alterna-

tlve will, in general, produce the same effect. Since the

idea of truncation seriously impairs our ability to produce

the parameters, its use must be rejected. Under either of

the two others we can proceed as follows. Prepare graphs

or tables of the cumulative probability distribution function

on a scale I 0- 1 \ . Use these to convert our random number

to a random number on the appropriate I o-f J lognormal or

gamma distribution. Scale this number to t — to t°

produce T. For both distributions, the parameters depend

only upon R and h. If we consider that the mode will occur

at some discrete point rzr- in \ O -1
\
we must still prepare

R. L J

many graphs for each such point to consider different possi-

ble values of h» This, of course magnifies considerably the

effort required for the use of either distribution. Both

distributions have the disadvantage that they cannot readily

be applied to any event which would seem to have a symmetri-

cal distribution.

The Truncated normal distribution has the advantage

that its use is facilitated by the extensively tabled normal

distribution. If we consider for the present only truncations

on the lower side, with the truncation at and the height of

the upper tail as approximately at 1, then for the interval

—.59
j , only 50 tables or graphs are required to provide

cumulative probability density functions for the %Q discrete

66





points \o —
.4-9J

at which the mode could occur. This is due

to the fact that at each position, we have but one curve to

consider. Using these graphs, uniform random numbers can be

converted to the appropriate truncated normal distribution,

and scaled for use as T. For truncations at 1, with the

lower tail height = at 0, the same tables or graphs can be

used, but the random number to be scaled would be 1 - the

random number generated by the conversion.

Grouped in order of simplicity and rapidity in use, our

seven functions would appear as

Uniform "1 Most simple and rapid
Triangular J

Truncated Normal Intermediate
(the normal a special case)

}

Lognormal
Gamma \ Least simple and rapid
Beta

Comparison as to ability to approximate reality is not

so easily done. In the first place what is reality? For

all but a limited number of the simplest type events, no

one knows. It is most likely that no one distribution best

represents all classes of events. One form of distribution

may best represent certain classes, but other classes would

require other distributions. Experimentation has not been

conducted nor is it likely to be conducted so as to compre-

hensively determine the distributions associated with the

classes of events under discussion. We can however be sure

that under certain conditions several distributions may all
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be very close approximations. Even in the standard sta-

tistical problem with adequate sampling this frequently

occurs. Using "goodness of fit" tests, two or mora distri-

butions are found to "fit" sample data.

Although we have no factual data as to reality, certain

generalizations and intuitive conjectures can be made from

observation and experience. In dealing with times required

to complete a military operation, it seems plausible that

nany times (if not the majority of the time) one is working

with an event requiring a skewed distribution. That is, the

minimum time is closer to the most likely than is the maxi-

mum. There are only so many ways in which to expedite the

operation, but it frequently seems that there are a million

ways to degrade it. Also intuitive is a feeling that the

probabilities of times near either extreme of the range

should be very low. That is, at either extreme, f (t) should

approach zero asymptotically.

Excluding the uniform and the triangular, all of our

Lensity functions if generated by the same t , t , t and h

tend, to plot close together from the mode to the upper end

point, Prom the lower end point to the mode, the truncated

normal will, in general, plot higher than the remainder. All

of them also conform to our previous conjectures to reality,

with the exception of the truncated normal at the truncation

end.
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From the foregoing, we are reduced to selecting a distri-

bution function on the basis of simplicity, speed in use,

and general applicability. Those that are simplest and fastest

are the least close to what we assume as reality. Those most

approximate to our notions are also the more complex and

laborious to use.

The next chapter of this thesis presents an algorithm

for use in generating the random times desired. In this

algorithm, we have elected to make use of the Truncated

Normal Distribution as the most satisfactory compromise of

speed and simplicity versus approximation to reality.
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CHAPTER III

AN ALGORITHM TO GENERATE RANDOM TIMES

Section 1

This chapter describes an algorithm for manual use to

generate random times. The input to the algorithm consists

of a uniformly distributed random number, and the user's

estimates of t . t and t . The output consists of a random
o* m p c

time T such that
vs. vs.

a. tA £ T i t and
o p

b. T is derived from a truncated normal distribution,

where truncation occurs on only one side and

3.5 <d> - Max RQ , R^ with the mode at t^.

/s /s xs
If R = R the distribution is normal, -<( - t

3.5 6 = R =R
p

.

In accomplishing the above, the algorithm performs the

following functional steps

:

1. Selects an appropriate truncated normal distribution

scaled to the interval I - 1

2, Converts the uniform random number to a truncated

normal random number in the selected distribution.

3» Scales the truncated random nunber to t , t to

produce T.

The necessary elements to accomplish this are

:

a, A Uniform Random Number Generator

This is a device which upon activation produces a
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random number drawn from a population which is

uniformly distributed from to 93 . It may consist

of no more than use of two columns from a table of

random numbers, or it may be a mechanical/electrical

device to produce such numbers.

b. A Table of Event Estimates

This is a user furnished table, listing alphabeti-

cally, by class, etc., the events occurring in

simulation with their associated t , t , and t .

o m p

c. Cumulative Probability Density Functions

These may be either graphs or tables, one for each

possible case of the truncated normal distribution

to be considered. Each graph represents a differ-

ent possible position of the mode for discrete

points in [_0.00 - O.^OJ . If the maximum (£l)

are used, there will be little significant change

from graph to graph. In Section i|, it will be

shown that the desired degree of approximation may

be obtained by considering some number less than the

maximum.

d. The Selector Scaler

This is a mechanical means for selecting the

appropriate cumulative probability distribution

function graph, and scaling a random number from

that distribution to the interval tQ - £_] .
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Construction of a selector-sealer should be within

the production capability of any reasonably large

training aids facility. If no selector-sealer is

used, the necessary instructions for manually

carrying out its functions will presently be

explained. The selector-sealer consists of the

following

:

(1) The 0-1 Bar - a horizontal bar with di-

visions from 0-99.

(2) The Time Bar - a bar mounted by bracket,

at a convenient angle to the 0-1 Bar,

with 1^0 divisions, and such that it

may slide through the bracket to place

any desired dividing point coincident

with the zero of the 0-1 Bar.

(3) The Converter Grid - a ruled sheet of

acetate or plexiglass with equidistant

parallel lines whose spacing is equal to

that of the divisions of the 0-1 Bar.

The right most line is termed the Base

Line and labelled B. Lines on the left

half are black, and those on the right are

red. Each line has a numerical designator,

A sketch of the components appears as Figure III-l.

The functioning of the algorithm is as follows

:
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When a random time is desired for an event simulation,

the event is located in the Table of Event Estimates. The

Time Bar is moved until t on the Time Bar is coincident
o

with the zero of the 0-1 Bar. The Converter Grid is placed

over the bars so that the base line connects the 1 of the

0-1 Bar with the value of t on the Time Bar. The grid

line on the converter passing closest to t is noted. Its

number represents the number of the Cumulative Probability

Distribution Function Graph to be used. A uniform random

number is generated. Entry is made with this number on the

vertical axis of the indicated graph. At the point where

a horizontal from this entry point intersects the graph,

the value on the horizontal scale is read. This value

represents the truncated normal random number [0 - 1 I • At

this number on the 0-1 Bar some line on the Converter Grid

is superimposed (the base line still connects 1 and t ).

The value that this line intersects on the Time Bar represents

T.
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SECTION 2

Instructions for Use of the Algorithm with

the Selector Scaler

When an event occurs in simulation for which a random

time delay is desired,

1. Locate the event in the Table of Event Estimates.

j *

P
Note tQ , t

lrl
and t

2, Slide the Time Bar until t is coincident with zero
o

on the 0-1 Bar.

3. Overlay the Converter Grid so that line B connects

the end point (1) of the 0-1 Bar with the value

of t on the Time Bar.
P

ij.. Locate tm on the Time Bar, and note the color and

number designator of the Converter Grid line

crossing it*

$, Locate the C.P.D. P. graph corresponding to this

designator.

6, Generate a uniform random number.

7. With this number enter the selected graph on the

vertical axis. Vihere a horizontal from the entry

point intersects the graph, read the value of the

horizontal axis. If the Converter Grid line crossing

t was red, subtract this value from 1. If the line

was black, use the value as read.
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8, Locate the number resulting from Step 7 on the

0-1 Bar. Follow the grid line crossing this point

back down to the Time Bar, and read the nearest value.

This is the desired random time.

Example : Suppose a random time delay is desired for an

engineer platoon to install a six row mine belt

across a valley 1500 meters wide. The Table of

Event Estimates yields

t = 2 hours

tm = 8 hours

t = 22 hours
P

The number 2 on the Time Bar is placed coincident

with of the 0-1 Bar. The Converter Grid is

placed so that line B connects the 1 of the 0-1

Bar and 22 of the Time Bar. The black line

crossing t has the designator .30. Figure III-2

is O.P.D. P. graph #30. A uniform random number is

generated, say 57. At .57 on the vertical axis of

Figure III-2, a horizontal line intersects the graph

where the nearest horizontal scale value is .35*

At 3S on the 0-1 Bar, the grid line is traced back

to yield 9 on the Time Bar. Since we are using

hours, 9 hours represents the random time delay to

be assessed.
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SECTION 3

Instruction for Use of the Algorithm

Without the Selector Scaler

When an event occurs in simulation for which a random

time delay is desired,

1. Locate the event in the Table of Event Estimates.

2. Compute *di - to = n, *p- - m = n1

P o P o

3. Locate C.P.D.F. graph # /rr/n \ n; n '~\>

i|.. Generate a uniform random number.

5, Enter the vertical axis of the selected graph with

the generated random number. Where a horizontal

from the entry point intersects the graph, read

the value of the horizontal axis. If the graph

# was n , subtract this value from 1. If it was

n, use the value as read.

6. Calling the number resulting from Step 5> t,

compute

T=(t - t ) t + t. to determine a random
P o u

time delay.

Using the example of Section 2,

m ° A -i
t„ t _ 7= = •«? p - m = .7V^ TBS' V^o

Again using graph # 30, Figure III-2 with a uniform
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random number assumed to be 57 the value of t

is .35

T = .35(22 ^ 2) + 2 = 9 hours.
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SSOTION k

Construction of Cumulative Probability

jJistribution Function Graphs

This algorithm makes use of graphs of the cumulative

probability density function (C.P.D.F. ) of various truncated

normal distributions to convert a uniform random number

(0-99) to a random number from a desired truncated normal

distribution. For generality and convenience, the truncated

normal density is considered to be truncated at zero, and to

have its upper 3.5 <^ point at one. We are actually concerned

with a random time T ifhich has a similar density function

truncated at t and its upper '5*5 6 point at t . The mode

(and so the mean of the underlying normal density) is at
s*\

[o-x]tm . This case can be reduced to the |_0 - 1 j interval by

scaling. Such scaling reduces to a minimum the number of

graphs required, since t , t and t could conceivably take
Hi XT

on any real positive values. In scaling, any point t, where

tQ _ t — t , corresponds to a point oc ^ o 6^^ — /
}

by

letting ^- £ *-£

Now the mode occurs at t which could occur at any value in

w ^o ', "£/» J • It will suffice for us to consider only such

cases where

($m-t>) ^ (tr~tm ) or &c * &,*
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i.e., where truncation occurs at t . Gases where t is the
o o

lower 3.5 o point, and t is the point of truncation can be

handled using the same set of graphs, but with slightly

different application.

If we desire a set of graphs to cover all possible

cases, we then require a graph for each possible position of

the mode. In the interval -.11 j this would imply a

graph for each possible value of

t t R . <> ^_ 1>m - o =o where R ^r R
TT IT °

Our uniform random numbers can only take on values in

(0-99)* and the truncated normal random numbers we will use

will be from the discrete set of points in (0.00 -,99), so

that really we are only interested in values of o which

are discrete points in (0.00 - O.I4.9). This would imply that

a maximum of 51 graphs would be needed to cover all possible

cases in which we have an interest.

Figure III-3 is a set of graphs of the C.P.D.P. for
•>\

truncated normal distributions as described, and for o, the

mode, equal to 0.00, 0.10, 0.20, 0.30, O.ij.0, and 0.50. An

examination of the curves indicates that as the mode approaches

zero, the successive curves lie closer together. As an ex-

ample, if we had a uniform random number of .5> and converted

it using curve #6, we would get a truncated random number

of ,19. If we used graph #5* we would get .22. Now graphs

#5 and 6 have very near maximum separation of the point used
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in the example. This means that for an interval that covers

10 possible positions of the mode, the resolution in random

number conversion is 3. Apparently, for this interval, we

do not need graphs for all possible positions of the mode.

In fact, the graphs for 0.00, O.Of? and 0.10 should be adequate

for our approximations.

A similar analysis for successive pairs of curves in-

dicates that we can get adequate coverage of the cases we

are interested in by using graphs for

0.00
0.05
o.io
0.13
0.16
0.20
0.22
0.2k
0.26
0.28 and

0.30 (.01) O.^O, or a total of

30 graphs.

If we are only interested in a "fair" approximation,

then the use of every other curve should suffice, and a total

of 15 graphs would be adequate.

In order to construct the necessary graphs, a table of

the normal integral is required. In the following discussion,

the term $(a) represents the area under the normal integral

from - 00 to a J /. e •
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-00

/

A property of the normal integral is that

£T-«y; = /_ isr*;

The mean (^ ) of the normal integral must be zero to

use the tables in customary form. Therefore, we will perform

our computations in such a manner as to effectively consider

-V = 0, Values less than the mode (which is equal to ^y )

will therefore be considered as negative. We can accomplish

this by measuring all our distances in terms of «^ and

measuring from the point which is the mode. Under our as-

sumptions, we determine 4 by

3>$d = /— *99 where trf* ™
/Z

If our horizontal axis is "Y, , then all values on V can be

scaled to some value of S » with at m on X* If ^ov ex-

ample, m = .3 on X we would have

./ ,2 .3 .^ >S o » 7 .g 9 /O -x i^/^es
-j 1 j 1 1 1 1 1 i i

* ^- %.

~/.S -Ao -0>£ O OS" AO /-5* 2>0 2<£ SO 3,5* d i'&/c*es

8^





Next, we determine A, the area under the normal density

from our lowest lvalue (equal to zero on the X scale) to

our highest <$ value (equal to 1 on the % scale). In the

example above

Using a table of the normal distribution,

A = .9330

For successive points £•<£ corresponding to 0.00,

0.05, 0.10, etc., on the X. scale, compute using the table,

I ft 6) -£(-/.&) _ &{€*) +3Tf/.*4)-f

A A

The values obtained are points on the C.P.D. P. curve

at the corresponding value of X> , and can be used to draw

the desired curve.
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SECTION $

Extensions to the Algorithm

Throughout the development of the algorithm continued

efforts have been exerted to develop a tool with sufficient

flexibility that the user can best fit to the individual

needs of his organization. Obviously there will be cases

where it is impractical or impossible to secure professional

estimates of t rt , t and t .
o* m p

Many war games evaluate weapons systems that are still

in the process of development. In these cases little more

than a vendor's estimate of the equipment's performance times

is available. In other cases new techniques and tactics are

evaluated in areas where there is no reservoir of experience

to offer assistance in establishing the appropriate delays

for performance or reaction times.

On the surface it would seem that in this situation the

war gammer has little choice but to resort to arbitrary or

fixed time delays.

With the advent of ever more sophisticated weapons, the

ability or inability of an opponent in a war game to use a

particular piece of equipment in a given situation can con-

ceivably affect the outcome of the entire game. Under such

circumstances, the controllers of the game must consider

every avenue that affords a closer approximation to reality.

To restate the underlying theme of this thesis; "there
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exist situations where the use of random time delays is not

a technical nicety, but a practical necessity to insure va-

lidity. "

How could the algorithm of this thesis be used in situ-

ations such as those described above. Let us devise an ex-

ample.

Suppose that we as war gammers are conducting a game in

which one of our perimeter defense weapons is an as yet un-

evaluated mobile rocket launcher. Let us further suppose we

have only the contractor 1 s estimate of the average time to

put this weapon into operation; say it is six hours. It

would indeed be a rare event if this estimate was accurate.

But still, some estimate must be accepted as the best

available at this stage of development.

One can rather easily decide on some most optimistic

time short of which, due to physical limitations, the set-

up of this equipment is virtually impossible. Let us assume

this time (t ) is four hours. In a similar fashion we can
o

establish our most pessimistic time (tp ) at say 12 hours.

Lastly, we can accept the contractors estimate of t as

six hours or adjust it as our common sense dictates. We now

have the necessary estimates to produce a random time delay

of between 1+ and 12 hours where, of course, the bulk of our

generated times will tend to fall near t .
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APPENDIX 1

THE AIR BATTLE ANALYZER

The Air Battle Analyzer was devised by Dr. M, C. Waddel,

Applied Physics Laboratory, Silver Spring, Maryland, It has

recently been used by the United States Marine Corps in a

study undertaken to evaluate the Air Defense capabilities of

the Marine Corps Expeditionary Force,

The Air Battle Analyzer is a scenario type, free play

war game in which each opponent is given a specific capa-

bility and plan of action. It attempts to provide, and

display, a readily accessible means for recording and dis-

playing chronologically the principle movements and operations

of the different surface and airborne units involved in a

battle. This display points up the interactions between

different units, in particular their ordering in time.

The physical equipment associated with the Air Battle

Analyzer consists of a plotting and display chart, several

tools for measuring and plotting on the displays, and several

nomographs

.

The chart combines three display plots, a range-azimuth

plot, a range-altitude plot, and a range-time plot. The

three plots have a common (horizontal) range scale with

range origins on a common vertical, to facilitate reference

from one plot to another. This combination of plots allows

for the simultaneous visualization of the elements of a
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hypothetical air/ground or sea battle in the four dimensions

of range, bearing, altitude and time.

Of the various tools and nomographs associated with the

Air Battle Analyzer only three will be described as being

germane to this discussion; the Fire Power Analyzer, the

Range of First Detection nomograph and the Target Speed

Scaling nomograph.

FIRS POWER ANALYZSR

A precise estimate of firepower of a surface-to-air

missile system requires detailed examination of the particu-

lar system operation. The cycle time between successive

intercepts, and the intercept envelope depend, often in a

rather involved manner, upon a large number of system

parameters. However, a reasonable understanding of missile

system firepower can be obtained from consideration of a

hypothetical system. To this end, a simple missile system

employing one launcher and one director has been defined.

The Firepower Analyzer is a tool for estimating the

firepower of a launcher defined as above, employing a 100 n.m.

missile, and engaging Mach 1.0 aircraft in a wave attack.

This speed was chosen arbitrarily. When the Analyzer is

placed on the range-azimuth plot of the display chart with

center at the missile ship and axis parallel to the attack

path, the various curves of the Analyzer intersect the

attack path at successive intercept points. To determine
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the firepower for any maximum intercept range of 100 n.m. or

less, first determine the points of first and last intercept

along the attack path. The first of these will be limited by

maximum missile range or by range of detection, etc. The

latter point is determined by weapon release point. To esti-

mate the single launcher system firepower, place the Analyzer

as indicated above and count the intercepts from 100 mile

range in to the last intercept point, and then subtract

those occurring beyond the assumed first intercept point.

In computing the difference, that is, in counting intercepts,

it is appropriate to interpolate for fractional intercepts,

inasmuch as the computation is directed toward estimating

the expected number of intercepts. To the above difference,

one more intercept should be added; the one occurring at

maximum intercept range, to obtain the total firepower.

FIRST INTERCEPT RANGE

The range of first intercept by a surface-to-air missile

system may be limited by target detection range and subsequent

delay for decision, etc., rather than by the maximum range of

the missile. In this event the range of first intercept is

the detection range less the distance traveled by the target

during the delay and the missile time of flight, and so is

dependent on target speed.

This game uses a nomograph, enclosure 1, to facilitate

the calculation of first intercept range. Snter the right
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hand abscissa with the detection range, move vertically up-

ward to the appropriate delay; then move horizontally to the

left to the proper target and speed; next move vertically

doimward to the same detection range, and read off first

intercept range from the lower ordinate. The dashed linos of

the figure trace the above path for a detection range of

150 n.m. (A), delay of 3 min. (B), and target speed of Maoh

It 2 (C), giving first intercept range of 7^4- n.m. (D and E).

TARGET SPEED SCALING

The firepower (expected number of intercepts) of a

surface-to-air missile battery depends critically upon target

speed inasmuch as fast targets will pass through the missile

envelope in shorter time and so be faced with fewer missiles

than slower targets. To facilitate scaling to various target

speeds the Air Battle Analyzer uses a nomograph, enclosure 2.

Enter the right hand abscissa with the number of intercepts

(AN) obtained from the Firepower Analyzer, move vertically

upward to the desired target speed; then move horizontally

to the left, reading off the firepox<jer from the ordinate.

The dashed lines of the figure trace the path for a differ-

ence A N = lij. (A), and target speed of Mach 0.9 (B), giving

firepower of 16 (C). The left hand portion of the nomograph

permits ready conversion of firepower to an estimate of ex-

pected number of kills. Prom the firepower reading on the

ordinate, continue to the left to the appropriate kill
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probability, then move vertically downward, reading off the

expected kills from the left hand abscissa. Again referring

to the dashed lines of the figure, firepower of 16 (C) and a

kill probability of 0.6 (D) give expected kills of 9.6 (E).

9k





91? Enclosure (1) to Appendix 1





00

d
q <\i in 00

<vi cO
<r

3

Si

>
1 . o

is J

III
-go $
-» U ~

n m

E

CSi

s

(0

m
s <

s ~2
gj

(9Z
3
SI

o

UJ
K
e

— — — - -

00

|
-

<^-"1 r~

<L^

«
©

* c
1 5
J c5 53 !

r

i o 5r

O

"ff

1 [^
//
^ —

,

N
^ Cft

-1

a
'C

^

IdSi >° a

Q.

j: Ui
i-u

KILL

0.4

(0
in

b

o

s 5
a
C1

a
c

>

i

CM

96 Enclosure (2) to Appendix 1





APPENDIX 2

SAMPLE QUESTIONNAIRE

You are asked to furnish your best independent, pro-
fessional estimate of the time it takes to accomplish
certain assignments. The result as furnished by you
and other Marine officers will be used in an attempt to
detemine whether such a method can yield more accurate
estimates than are currently provided by PM's, TM's and
various planning publications.

Enclosure (1), page 2, lists the events and space to
fill in your estimates. Should you feel that certain
events are so specialized in nature that you, in the
light of personal experience, duty assig;nments, etc.,
cannot give a reasonably valid estimate, you may omit
estimates for those events. It is recognized that
each of these events depends on a wide variety of cir-
cumstances. No attempt to completely describe the
situation can be successful. Therefore, it is re-
quested that you make the best estimate possible in the
light of your interpretation of each problem posed. The
time required for the following is offered in explanation
of the various times you are asked to estimate.

most likely time

iiost optimistic time

Host pessimistic time

The time required to
accomplish the action
under "normal" cir-
cumstance s . "Normai

"

to be construed as
those day to day con-
ditions you would .

expect to encounter
under circumstances
such that the described
action could logically
be assigned

The minimum time required
to accomplish the action
of all circumstances,
personnel reaction, weather,
terrain, etc., combined to
work in your favor.

xhe time required to ac-
complish the action under
extreme adverse conditions,
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and poor response on the
part of the participants.
The conditions are not so
severe as to preclude ac-
complishment of the mission,
but weather, fatigue, human
error, etc., all exercise
strong degrading effects.

Note: Unless otherwise indicated, times are to be from
receipt of essignment until accomplishment, and
should reflect planning, reconnaissance, and
coordination requirements.

Estimates are desired to the nearest 15 minutes
unless otherwise indicated.

Percentage of times the event will occur within
hours/minut e s of the most likely time.

If the event were repeated a large number of times,
this is your estimate of the per cent that require
a time within +/- hours/minutes of your estimate
of the most likely time.

1st JiVent

deserve battalion to organize and occupy combat outpost
to include preparation of hasty defense and preregistration
of supporting arms. Assume foot march time from reserve
position to OP site is 2 hours.

Most likely time

Most optimistic time

liost pessimistic time

Percentage of times event would occur within 30 minutes of

the most likely time

2nd invent

To mount out "ready" B LT, from Marine Corps Base to afloat
status.

;iost likely time

-lost optimistic time
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Most pessimistic time

Percentage of times event would occur within 60 minutes of

the most likely time

3rd averit

Infantry company to conduct physical fitness testing usingcurrent test. Time from first man starts until last man
finishes. Assume no parallel facilities.

Most likely time

Most optimistic time

Most pessimistic time

Percental of times event would occur within 30 minutes of

the most likely time

kth Bvent

To freli-lift rifle company in vicinity of Helipad. Five
men heliteams. Pad capacity - 3 helicopters. Sufficient
helicopters airborne in vicinty to move company. Time from
touch down of first flight until last flight is airborne.
(Time to nearest 5 minutes)

Most likely time

Most optimistic time

Most pessimistic time

Percentage of times event would occur within 5 minutes of the

most likely time

3th Hvent

Reserve rifle company to provide squad size daylight
reconnaissance patrol. Time from receipt of order to departure
of patrol, but to include briefing, rehearsal, and check.

Host likely time

Most optimistic time
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Most pessimistic time

Percentage of times event would occur within l£ minutes of

the most likely time

6th avent

Time to establish Infantry Battalion CP. Time from arrival
of first elements at CP site until CP is established and
functioning adequately.

Most likely time

Ilost optimistic time

Host pessimistic time

Percentage of times the event will occur within 15 minutes

of the most likely time

7th jjgvent

Time to prepare one platoon from an FMP unit to conduct
formal guard mount, to include as you feel might be required,
classroom training, rehearsals, and preliminary inspection.

Most likely time

Most optimistic time

Most pessimistic time

Percentage of times the event will occur within 30 minutes

of the most likely time

6th Event

Time to establish one platoon road block in hasty defense,
800 meters forward of parent company's MLR position.

Most likely time

Most optimistic time

Most pessimistic time

100





Percentage of times the event will occur within If? minutes

of nost likely time

9th Invent

Time to establish field mess. Time from arrival of person-
nel and equipment until mess is set up and ready to feed "A"
type rations,

Host likely time

Most optimistic time

Most pessimistic tine

Percentage of tidies the event will occur within 15 minutes

of most likely time

10th Svent

You are a Forward Air Controller directing a live ordnance
air exercise on Jrowns Island. You are also acting as Division
Air ... r . Assuming that you are booked in by radio net to
a group headquarters at Cherry Point, '.hat is your estimate
of the time required from time of radio contact with the a/c
group headquarters until a flight of four jet a/c are on
target under your direction as PAC, Assume the group has
alerted a squadron to have pilots and armed a/c standing by.
Assume a ten minute pilot briefing by the squadron, and consider
ordnance plug in. (To nearest j? minutes)

Host likely time

,ost optimistic time ________

Most pessimistic time

Percentage of times the event will occur within \S minutes of

the lost likely time ______

Your rank Specialty Years of Service
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